Mensuration the study of geometric figures

```
Mensuration is the branch of mathematics which deals with the study of various parameters of geometric figures such as areas, perimeters, volumes etc.
```


Square geometric figure

Rectangle geometric figure

Parallelogram geometric figure

height $:=10.0 \mathrm{~mm} \quad$ base $:=20.0 \mathrm{~mm} \quad \alpha:=60.0 \mathrm{deg}$

angle beta $=180$ deg - angle alpha

$\beta:=180 \mathrm{deg}-\alpha=120.0 \mathrm{deg}$
angles converted to radians
$\alpha=1.0472 \mathrm{rad} \beta=2.0944 \mathrm{rad}$
side adjacent to angle alpha found using trigonometry
adj $:=\frac{\text { height }}{\operatorname{tg}(\alpha)}=5.7735 \mathrm{~mm}$
length of sloping side found using Pythagorean theorem
slope $:=\sqrt{\text { adj }{ }^{2}+h e i g h t^{2}}=11.547 \mathrm{~mm}$
area $:=$ height \cdot base $=200.0 \mathrm{~mm}^{2}$
perimeter $:=2 \cdot($ slope + base $)=63.094 \mathrm{~mm}$
diag_1 $:=\sqrt{\left(\text { slope }^{2}+\text { base }^{2}\right)+2 \cdot(\text { slope } \cdot \text { base } \cdot \cos (\alpha))}=27.6455 \mathrm{~mm}$
diag_2 $\left.:=\sqrt{\left(\text { slope }^{2}+\text { base }\right.}{ }^{2}\right)-2 \cdot($ slope \cdot base $\cdot \cos (\alpha))=17.3895 \mathrm{~mm}$

To determine the x and y co-ordinates of the centroid

To determine the x and y co-ordinates from the top of the Trapezoid and right edge
height $:=10.0 \mathrm{~mm} \quad$ base $:=20.0 \mathrm{~mm} \quad$ top $:=12.5 \mathrm{~mm} \quad \alpha:=60.0 \mathrm{deg}$
angle converted to radians
$\alpha=1.0472 \mathrm{rad}$
side adjacent to angle alpha found using trigonometry
adj $:=\frac{\text { height }}{\operatorname{tg}(\alpha)}=5.7735 \mathrm{~mm}$
$a d j_{2}:=b a s e-($ top $+a d j)=1.7265 \mathrm{~mm}$
length of sloping sides found using Pythagorean theorem
slope $:=\sqrt{\text { adj }{ }^{2}+h e i g h t^{2}}=11.547 \mathrm{~mm}$
slope $_{2}:=\sqrt{\text { adj }_{2}^{2}+\text { height }^{2}}=10.1479 \mathrm{~mm}$
area $:=\frac{\text { height } \cdot(\text { base }+ \text { top })}{2}=162.5 \mathrm{~mm}^{2}$
perimeter $:=$ top + base + slope + slope $_{2}=54.195 \mathrm{~mm}$
$x:=\frac{\text { base }}{2}+\frac{(2 \cdot \text { top }+ \text { base }) \cdot\left(\text { slope }^{2}-\text { slope }_{2}^{2}\right)}{6 \cdot\left(\text { base }^{2}-\text { top }^{2}\right)}=10.9339 \mathrm{~mm}$
$y:=\frac{\text { base }+2 \cdot \text { top }}{3 \cdot(\text { top }+ \text { base })} \cdot$ height $=4.6154 \mathrm{~mm}$
$x_{1}:=\frac{\text { base }}{2}-\frac{(2 \cdot \text { top }+ \text { base }) \cdot\left(\text { slope }^{2}-\text { slope }_{2}^{2}\right)}{6 \cdot\left(\text { base }^{2}-\text { top }^{2}\right)}=9.06608 \mathrm{~mm}$
$y_{1}:=\frac{\text { top }+2 \cdot \text { base }}{3 \cdot(\text { top }+ \text { base })} \cdot$ height $=5.3846 \mathrm{~mm}$

Triangle geometric figure

height $:=10.0 \mathrm{~mm} \quad$ base $:=20.0 \mathrm{~mm} \quad \alpha:=60.0$
angle converted to radians
$\alpha=1.0472 \mathrm{rad}$
side adjacent to angle alpha using trigonometry
$\text { adj }:=\frac{\text { height }}{\operatorname{tg}(\alpha)}=5.7735 \mathrm{~mm}$
$a d j_{2}:=$ base - adj $=14.2265 \mathrm{~mm}$
length of sloping sides using Pythagorean theorem
$\text { slope }:=\sqrt{a d j^{2}+h e i g h t^{2}}=11.547 \mathrm{~mm}$
$\text { slope }_{2}:=\sqrt{\mathrm{adj}_{2}^{2}+\text { height }^{2}}=17.3895 \mathrm{~mm}$
$\text { area }:=\frac{\text { height } \cdot \text { base }}{2}=100 \mathrm{~mm}^{2}$
perimeter $:=$ base + slope + slope $_{2}=48.9365 \mathrm{~mm}$
The centroid of the triangle is the point where the triangle's three medians intersect.

п is the ratio of a circles
circumference to its diameter
radius:=10.0 mm
$\pi=3.141593$
area $:=\pi \cdot$ radius $^{2}=314.1593 \mathrm{~mm}^{2}$
perimeter $:=2 \cdot \boldsymbol{\pi} \cdot$ radius $=62.8319 \mathrm{~mm}$
The centroid of a circular figure is a point equidistant from any point on the perimeter of the circle, (the centre of the circle)
diameter $:=2 \cdot$ radius $=20 \mathrm{~mm}$
circumference :=perimeter $=62.8319 \mathrm{~mm}$
ratio $:=\frac{\text { circumference }}{\text { diameter }}=3.141593$

Sector of circle geometric figure

radius $:=7.5 \mathrm{~mm} \quad \alpha:=120.0 \mathrm{deg}$

$$
\begin{aligned}
& \text { area }:=\frac{\text { radius }^{2} \cdot \alpha}{2}=58.9049 \mathrm{~mm}^{2} \\
& \text { arc }:=\text { radius } \cdot \alpha=15.708 \mathrm{~mm}
\end{aligned}
$$

perimeter $:=2 \cdot$ radius $+\operatorname{arc}=30.708 \mathrm{~mm}$
$x:=\frac{2 \cdot \text { radius } \cdot \sin \left(\frac{\alpha}{2}\right)}{3 \cdot \frac{\alpha}{2}}=4.135 \mathrm{~mm}$

Ellipse geometric figure

$x:=10.0 \mathrm{~mm} \quad y:=5.0 \mathrm{~mm}$
area $:=\boldsymbol{\pi} \cdot x \cdot y=157.0796 \mathrm{~mm}^{2}$

The most accurate method to obtain the perimeter is Calculus based on the complete elliptic integral of the second kind. More detail is given on the Wikipedia page:
https://en.wikipedia.org/wiki/Ellipse

Hyperlink to https://en.wikipedia.org/wiki/Ellipse not available from SMath Cloud Download sheet and use with "Hyperlink Region" by davide Carpi

$$
e:=\sqrt{1-\frac{y^{2}}{x^{2}}}=0.866
$$

equation to calculate the eccentricity (e) of the Ellipse

$$
\text { perimeter }:=4 \cdot x \cdot \int_{0}^{\frac{\pi}{2}} \sqrt{1-e^{2} \cdot(\sin (\theta))^{2}} d \theta=48.4422 \mathrm{~mm}
$$

There are also a number of different equations for approximating the perimeter.
perimeter $:=\boldsymbol{\pi} \cdot(x+y)=47.1239 \mathrm{~mm} \quad$ perimeter $:=2 \cdot \boldsymbol{\pi} \cdot \sqrt{\frac{y^{2}+x^{2}}{2}}=49.6729 \mathrm{~mm}$

