

'HE ENVIRD EN EER SCIENCE, ENGINEERING & LOGY

CALCULATION SHEET

Mensuration the study of geometric figures

Mensuration is the branch of mathematics which deals with the study of various parameters of geometric figures such as areas, perimeters, volumes etc.

height := 10.0 mm base := 20.0 mm
$area := height \cdot base = 200.0 \text{ mm}^2$
<pre>perimeter := 2 ·(height + base) = 60.0 mm</pre>
$diagonal := \sqrt{\left(height^2 + base^2\right)} = 22.3607 \text{ mm}$

	$height := 10.0 \text{ mm} base := 20.0 \text{ mm} \alpha := 60.0 \text{ deg}$
	angle beta = 180 deg - angle alpha
	$\beta := 180 \deg - \alpha = 120.0 \deg$
height	angles converted to radians
a	$\alpha = 1.0472 \text{ rad } \beta = 2.0944 \text{ rad}$
V V	side adjacent to angle alpha found using trigonometry
	$adj := \frac{height}{tg(\alpha)} = 5.7735 \text{ mm}$
	length of sloping side found using Pythagorean theorem
	$slope := \sqrt{adj^2 + height^2} = 11.547 \text{ mm}$
	$area := height \cdot base = 200.0 \text{ mm}^2$
	$perimeter := 2 \cdot (slope + base) = 63.094 \text{ mm}$
diag_1 ≔¶	$\left(slope^{2} + base^{2}\right) + 2 \cdot (slope \cdot base \cdot \cos(\alpha)) = 27.6455 \text{ mm}$
diag_2:= 1	$\left(slope^{2}+base^{2}\right)-2\cdot(slope\cdot base\cdot \cos(\alpha)) = 17.3895 \text{ mm}$

To determine the x and y co-ordinates from the top of the Trapezoid and right edge

Triangle geometric figure

To determine the x and y co-ordinates of the centroid

$$\begin{array}{l} \underline{height:=10.0 \text{ mm}} \quad \underline{base:=20.0 \text{ mm}} \quad \alpha:=60.0 \text{ deg} \\ \hline \\ \hline angle \ converted \ to \ radians} \\ \alpha=1.0472 \ rad \\ \hline \\ \hline side \ adjacent \ to \ angle \ alpha \ using \ trigonometry} \\ \hline \\ adj:=\frac{height}{\mathrm{tg}(\alpha)}=5.7735 \ \mathrm{mm} \\ \hline \\ adj_{2}:=base \ -adj=14.2265 \ \mathrm{mm} \\ \hline \\ \hline \\ length \ of \ sloping \ sides \ using \ Pythagorean \ theorem \\ \hline \\ slope:=\sqrt{adj}^{2} + height^{2} = 11.547 \ \mathrm{mm} \\ \hline \\ slope_{2}:=\sqrt{adj_{2}^{2} + height^{2}} = 17.3895 \ \mathrm{mm} \\ \hline \\ area:=\frac{height \cdot base}{2} = 100 \ \mathrm{mm}^{2} \\ \hline \\ perimeter:=base \ + slope \ + slope_{2} = 48.9365 \ \mathrm{mm} \end{array}$$

The centroid of the triangle is the point where the triangle's three medians intersect.

Circle geometric figure

 π is the ratio of a circles circumference to its diameter

radius := 10.0 mm

$$\mathbf{\pi} = 3.141593$$

area := $\mathbf{\pi} \cdot radius^2 = 314.1593 \text{ mm}^2$

perimeter := $2 \cdot \mathbf{n} \cdot radius = 62.8319 \text{ mm}$

The centroid of a circular figure is a point equidistant from any point on the perimeter of the circle, (the centre of the circle)

 $diameter := 2 \cdot radius = 20 \text{ mm}$

circumference := perimeter = 62.8319 mm

 $ratio := \frac{circumference}{diameter} = 3.141593$

perimeter := $\mathbf{n} \cdot (x + y) = 47.1239 \text{ mm}$ perimeter := $2 \cdot \mathbf{n} \cdot \sqrt{\frac{y^2 + x^2}{2}} = 49.6729 \text{ mm}$